Topics
Bayesian Modelling
Complexity/Complex Systems/Dynamic Systems
Computational Neuroscience
Computational Vision
Connectionism
Hidden Markov Models
Human Computer Interaction
Statistical Learning Theory
Neurocomputing
Researchers will find Neurocomputing an essential guide to the concepts employed in this field that have been taken from disciplines as varied as neuroscience, psychology, cognitive science, engineering, and physics. A number of these important historical papers contain ideas that have not yet been fully exploited, while the more recent articles define the current direction of neurocomputing and point to future research. Each article has an introduction that places it in historical and intellectual perspective.
Included among the 43 articles are the pioneering contributions of McCulloch and Pitts, Hebb, and Lashley; innovative work by Von Neumann, Minsky and Papert, Cooper, Grossberg, and Kohonen; exciting new developments in parallel distributed processing.