ISBN: 9780262327312 | 568 pp. | June 2015


Principles of Neural Design

Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. 
Setting out to “reverse engineer” the brain—disassembling it to understand it—Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of “anticipatory regulation”; identify constraints on neural design and the need to “nanofy”; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes “save only what is needed.”
Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.

Table of Contents

  1. Preface
  2. Acknowledgments
  3. Introduction
  4. 1. What Engineers Know about Design
  5. 2. Why an Animal Needs a Brain
  6. 3. Why a Bigger Brain?
  7. 4. How Bigger Brains Are Organized
  8. 5. Information Processing: From Molecules to Molecular Circuits
  9. 6. Information Processing in Protein Circuits
  10. 7. Design of Neurons
  11. 8. How Photoreceptors Optimize the Capture of Visual Information
  12. 9. The Fly Lamina: An Efficient Interface for High-Speed Vision
  13. 10. Design of Neural Circuits: Recording Analogue Signals to Pulsatile
  14. 11. Principles of Retinal Design
  15. 12. Beyond the Retina: Pathways to Perception and Action
  16. 13. Principles of Efficient Wiring
  17. 14. Learning as Design/Design of Learning
  18. 15. Summary and Conclusions
  19. Principles of Neural Design
  20. Notes
  21. References
  22. Index