Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
ISSN
0891-2017
E-ISSN
1530-9312
2014 Impact factor:
1.23

Computational Linguistics

Paola Merlo, Editor
December 2001, Vol. 27, No. 4, Pages 521-544
(doi: 10.1162/089120101753342653)
© 2001 Association for Computational Linguistics
A Machine Learning Approach to Coreference Resolution of Noun Phrases
Article PDF (253.33 KB)
Abstract

In this paper, we present a learning approach to coreference resolution of noun phrases in unrestricted text. The approach learns from a small, annotated corpus and the task includes resolving not just a certain type of noun phrase (e.g., pronouns) but rather general noun phrases. It also does not restrict the entity types of the noun phrases; that is, coreference is assigned whether they are of “organization,” “person,” or other types. We evaluate our approach on common data sets (namely, the MUC-6 and MUC-7 coreference corpora) and obtain encouraging results, indicating that on the general noun phrase coreference task, the learning approach holds promise and achieves accuracy comparable to that of nonlearning approaches. Our system is the first learning-based system that offers performance comparable to that of state-of-the-art nonlearning systems on these data sets.