Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
ISSN
0891-2017
E-ISSN
1530-9312
2014 Impact factor:
1.23

Computational Linguistics

Paola Merlo, Editor
December 2002, Vol. 28, No. 4, Pages 497-526
(doi: 10.1162/089120102762671963)
© 2002 Association for Computational Linguistics
Generating Indicative-Informative Summaries with SumUM
Article PDF (179.17 KB)
Abstract

We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies.