Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

July 1, 2002, Vol. 14, No. 5, Pages 769-784
(doi: 10.1162/08989290260138663)
© 2002 Massachusetts Institute of Technology
Multiple Movement Representations in the Human Brain: An Event-Related fMRI Study
Article PDF (2.34 MB)
Abstract

Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/ or response execution and areas specifically involved in response preparation. The specific contribution of parietal and frontal areas to motor preparation has been explored in electrophysiological studies in monkey. However, the associative nature of sensorimotor tasks calls for the additional contributions of other cortical regions. In this article, we have investigated the functional anatomy of movement representations in the context of an associative visuomotor task with instructed delays. Neural correlates of movement representations have been assessed by isolating preparatory activity that is independent from the performance of an actual motor act, or from the presence of a response's target. Movement instruction (specified by visual cues) and motor performance (specified by an auditory cue) were separated by a variable delay period. We have used whole-brain event-related fMRI to measure human brain activity during the performance of such a task. We have focused our analysis on specific preparatory activity, defined as a sustained response over variable delay periods between a transient visual instruction cue and a brief motor response, temporally independent from the transient events. Behavioral and electrophysiological controls ensured that preparatory activity was not contaminated by overt motor responses or working memory processes. We report suggestive evidence for multiple movement representations in the human brain. Specific sustained activity in preparation for an action was found not only in parieto-frontal regions but also in extrastriate areas and in the posterior portion of the superior temporal sulcus. We suggest that goal-directed preparatory activity relies on both visuo-motor and visuoperceptual areas. These findings point to a functional anatomical basis for the integration of perceptual and executive processes.