Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

August 15, 2002, Vol. 14, No. 6, Pages 887-901
(doi: 10.1162/089892902760191117)
© 2002 Massachusetts Institute of Technology
Hypnosis Modulates Activity in Brain Structures Involved in the Regulation of Consciousness
Article PDF (3.26 MB)
Abstract

The notion of consciousness is at the core of an ongoing debate on the existence and nature of hypnotic states. Previously, we have described changes in brain activity associated with hypnosis (Rainville, Hofbauer, Paus, Duncan, Bushnell, & Price, 1999). Here, we replicate and extend those findings using positron emission tomography (PET) in 10 normal volunteers. Immediately after each of 8 PET scans performed before (4 scans) and after (4 scans) the induction of hypnosis, subjects rated their perceived level of “mental relaxation” and “mental absorption,” two of the key dimensions describing the experience of being hypnotized. Regression analyses between regional cerebral blood flow (rCBF) and self-ratings confirm the hypothesized involvement of the anterior cingulate cortex (ACC), the thalamus, and the ponto-mesencephalic brainstem in the production of hypnotic states. Hypnotic relaxation further involved an increase in occipital rCBF that is consistent with our previous interpretation that hypnotic states are characterized by a decrease in cortical arousal and a reduction in cross-modality suppression (disinhibition). In contrast, increases in mental absorption during hypnosis were associated with rCBF increases in a distributed network of cortical and subcortical structures previously described as the brain's attentional system. These findings are discussed in support of a state theory of hypnosis in which the basic changes in phenomenal experience produced by hypnotic induction reflect, at least in part, the modulation of activity within brain areas critically involved in the regulation of consciousness.