Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

August 15, 2003, Vol. 15, No. 6, Pages 900-910
(doi: 10.1162/089892903322370816)
© 2003 Massachusetts Institute of Technology
Electrophysiological Correlates of Age and Gender Perception on Human Faces
Article PDF (1.93 MB)
Abstract

In a previous experiment using scalp event-related potentials (ERPs), we have described the neuroelectric activities associated with the processing of gender information on human faces (Mouchetant-Rostaing, Giard, Bentin, Aguera, & Pernier, 2000). Here we extend this study by examining the processing of age on faces using a similar experimental paradigm, and we compare age and gender processing. In one session, faces were of the same gender (women) and of one age range (young or old), to reduce gender and age processing. In a second session, faces of young and old women were randomly intermixed but age was irrelevant for the task, hence, age discrimination, if any, was assumed to be incidental. In the third and fourth sessions, faces had to be explicitly categorized according to their age or gender, respectively (intentional discrimination). Neither age nor gender processing affected the occipito-temporal N170 component often associated with the detection of physiognomic features and global structural encoding of faces. Rather, the three age and gender discrimination conditions induced similar fronto-central activities around 145–185 msec. In our previous experiment, this ERP pattern was also found for implicit and explicit categorization of gender from faces but not in a control condition manipulating hand stimuli (Mouchetant-Rostaing, Giard, Bentin, et al., 2000). Whatever their exact nature, these 145–185 msec effects therefore suggest, first, that similar mechanisms could be engaged in age and gender perception, and second, that age and gender may be implicitly processed irrespective of their relevance to the task, through somewhat specialized mechanisms. Additional ERP effects were found at early latencies (45–90 msec) in all three discrimination conditions, and around 200–400 msec during explicit age and gender discrimination. These effects have been previously found in control conditions manipulating nonfacial stimuli and may therefore be related to more general categorization processes.