Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

September 1, 2000, Vol. 12, No. 9, Pages 2175-2207
(doi: 10.1162/089976600300015105)
© 2000 Massachusetts Institute of Technology
Approximate Maximum Entropy Joint Feature Inference Consistent with Arbitrary Lower-Order Probability Constraints: Application to Statistical Classification
Article PDF (245.18 KB)
Abstract

We propose a new learning method for discrete space statistical classifiers. Similar to Chow and Liu (1968) and Cheeseman (1983), we cast classification/inference within the more general framework of estimating the joint probability mass function (p.m.f.) for the (feature vector, class label) pair. Cheeseman's proposal to build the maximum entropy (ME) joint p.m.f. consistent with general lower-order probability constraints is in principle powerful, allowing general dependencies between features. However, enormous learning complexity has severely limited the use of this approach. Alternative models such as Bayesian networks (BNs) require explicit determination of conditional independencies. These may be difficult to assess given limited data. Here we propose an approximate ME method, which, like previous methods, incorporates general constraints while retaining quite tractable learning. The new method restricts joint p.m.f. support during learning to a small subset of the full feature space. Classification gains are realized over dependence trees, tree-augmented naive Bayes networks, BNs trained by the Kutato algorithm, and multilayer perceptrons. Extensions to more general inference problems are indicated. We also propose a novel exact inference method when there are several missing features.