Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

June 1, 2000, Vol. 12, No. 6, Pages 1313-1335
(doi: 10.1162/089976600300015385)
© 2000 Massachusetts Institute of Technology
Attractor Dynamics in Feedforward Neural Networks
Article PDF (231.81 KB)
Abstract

We study the probabilistic generative models parameterized by feedfor-ward neural networks. An attractor dynamics for probabilistic inference in these models is derived from a mean field approximation for large, layered sigmoidal networks. Fixed points of the dynamics correspond to solutions of the mean field equations, which relate the statistics of each unittothoseofits Markovblanket. We establish global convergence of the dynamics by providing a Lyapunov function and show that the dynamics generate the signals required for unsupervised learning. Our results for feedforward networks provide a counterpart to those of Cohen-Grossberg and Hopfield for symmetric networks.