Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

March 1, 2001, Vol. 13, No. 3, Pages 547-562
(doi: 10.1162/089976601300014457)
© 2001 Massachusetts Institute of Technology
A Complex Cell-Like Receptive Field Obtained by Information Maximization
Article PDF (1.13 MB)
Abstract

The energy model (Pollen & Ronner, 1983; Adelson & Bergen, 1985) for a complex cell in the visual cortex is investigated theoretically. The energy model describes the output of a complex cell as the squared sum of outputs of two linear operators. An information-maximization problem to determine the two linear operators is investigated assuming the low signal-to-noise ratio limit and a localization term in the objective function. As a result, two linear operators characterized by a quadrature pair of Gabor functions are obtained as solutions. The result agrees with the energy model, which well describes the shift-invariant and orientation-selective responses of actual complex cells, and thus suggests that complex cells are optimally designed from an information-theoretic viewpoint.