Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

February 2001, Vol. 13, No. 2, Pages 357-387
(doi: 10.1162/089976601300014574)
© 2001 Massachusetts Institute of Technology
A Competitive-Layer Model for Feature Binding and Sensory Segmentation
Article PDF (653.99 KB)
Abstract

We present a recurrent neural network for feature binding and sensory segmentation: the competitive-layer model (CLM). The CLM uses topo-graphically structured competitive and cooperative interactions in a layered network to partition a set of input features into salient groups. The dynamics is formulated within a standard additive recurrent network with linear threshold neurons. Contextual relations among features are coded by pairwise compatibilities, which define an energy function to be minimized by the neural dynamics. Due to the usage of dynamical winner-take-all circuits, the model gains more flexible response properties than spin models of segmentation by exploiting amplitude information in the grouping process. We prove analytic results on the convergence and stable attractors of the CLM, which generalize earlier results on winner-take-all networks, and incorporate deterministic annealing for robustness against local minima. The piecewise linear dynamics of the CLM allows a linear eigensubspace analysis, which we use to analyze the dynamics of binding in conjunction with annealing. For the example of contour detection, we show how the CLM can integrate figure-ground segmentation and grouping into a unified model.