Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

January 1, 2001, Vol. 13, No. 1, Pages 1-33
(doi: 10.1162/089976601300014619)
© 2000 Massachusetts Institute of Technology
Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis
Article PDF (274.24 KB)
Abstract

The temporal precision with which neurons respond to synaptic inputs has a direct bearing on the nature of the neural code. A characterization of the neuronal noise sources associated with different sub-cellular components (synapse, dendrite, soma, axon, and so on) is needed to understand the relationship between noise and information transfer. Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on information transfer in the absence of interaction among presynaptic inputs. We derive theoretical lower bounds on the capacity of a simple model of a cortical synapse under two different paradigms. In signal estimation, the signal is assumed to be encoded in the mean firing rate of the presynaptic neuron, and the objective is to estimate the continuous input signal from the postsynaptic voltage. In signal detection, the input is binary, and the presence or absence of a presynaptic action potential is to be detected from the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is characterized by deriving optimal strategies under these two paradigms. On the basis of parameter values derived from neocortex, we find that single cortical synapses cannot transmit information reliably, but redundancy obtained using a small number of multiple synapses leads to a significant improvement in the information capacity of synaptic transmission.