Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

May 1, 2001, Vol. 13, No. 5, Pages 1137-1170
(doi: 10.1162/08997660151134361)
© 2001 Massachusetts Institute of Technology
Analyzing Holistic Parsers: Implications for Robust Parsing and Systematicity
Article PDF (177.19 KB)
Abstract

Holistic parsers offer a viable alternative to traditional algorithmic parsers. They have good generalization performance and are robust inherently. In a holistic parser, parsing is achieved by mapping the connectionist representation of the input sentence to the connectionist representation of the target parse tree directly. Little prior knowledge of the underlying parsing mechanism thus needs to be assumed. However, it also makes holistic parsing difficult to understand. In this article, an analysis is presented for studying the operations of the confluent pre-order parser (CPP). In the analysis, the CPP is viewed as a dynamical system, and holistic parsing is perceived as a sequence of state transitions through its state-space. The seemingly one-shot parsing mechanism can thus be elucidated as a step-by-step inference process, with the intermediate parsing decisions being reflected by the states visited during parsing.

The study serves two purposes. First, it improves our understanding of how grammatical errors are corrected by the CPP. The occurrence of an error in a sentence will cause the CPP to deviate from the normal track that is followed when the original sentence is parsed. But as the remaining terminals are read, the two trajectories will gradually converge until finally the correct parse tree is produced. Second, it reveals that having systematic parse tree representations alone cannot guarantee good generalization performance in holistic parsing. More important, they need to be distributed in certain useful locations of the representational space. Sentences with similar trailing terminals should have their corresponding parse tree representations mapped to nearby locations in the representational space. The study provides concrete evidence that encoding the linearized parse trees as obtained via preorder traversal can satisfy such a requirement.