Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

October 1, 2002, Vol. 14, No. 10, Pages 2269-2316
(doi: 10.1162/08997660260293238)
© 2002 Massachusetts Institute of Technology
Information-Geometric Measure for Neural Spikes
Article PDF (803.9 KB)
Abstract

This study introduces information-geometric measures to analyze neural firing patterns by taking not only the second-order but also higher-order interactions among neurons into account. Information geometry provides useful tools and concepts for this purpose, including the orthogonality of coordinate parameters and the Pythagoras relation in the Kullback-Leibler divergence. Based on this orthogonality, we show a novel method for analyzing spike firing patterns by decomposing the interactions of neurons of various orders. As a result, purely pairwise, triple-wise, and higher-order interactions are singled out. We also demonstrate the benefits of our proposal by using several examples.