Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

January 1, 2003, Vol. 15, No. 1, Pages 57-65
(doi: 10.1162/089976603321043694)
© 2002 Massachusetts Institute of Technology
A Constrained EM Algorithm for Principal Component Analysis
Article PDF (75.73 KB)
Abstract

We propose a constrained EM algorithm for principal component analysis (PCA) using a coupled probability model derived from single-standard factor analysis models with isotropic noise structure. The single probabilistic PCA, especially for the case where there is no noise, can find only a vector set that is a linear superposition of principal components and requires postprocessing, such as diagonalization of symmetric matrices. By contrast, the proposed algorithm finds the actual principal components, which are sorted in descending order of eigenvalue size and require no additional calculation or postprocessing. The method is easily applied to kernel PCA. It is also shown that the new EM algorithm is derived from a generalized least-squares formulation.