288 pp. per issue
6 x 9, illustrated
2014 Impact factor:

Neural Computation

March 1, 2003, Vol. 15, No. 3, Pages 565-596
(doi: 10.1162/089976603321192086)
© 2003 Massachusetts Institute of Technology
Spike-Driven Synaptic Dynamics Generating Working Memory States
Article PDF (289.84 KB)

The collective behavior of a network, modeling a cortical module of spiking neurons connected by plastic synapses is studied. A detailed spike-driven synaptic dynamics is simulated in a large network of spiking neurons, implementing the full double dynamics of neurons and synapses. The repeated presentation of a set of external stimuli is shown to structure the network to the point of sustaining working memory (selective delay activity). When the synaptic dynamics is analyzed as a function of pre- and postsynaptic spike rates in functionally defined populations, it reveals a novel variation of the Hebbian plasticity paradigm: in any functional set of synapses between pairs of neurons (e.g., stimulatedstimulated, stimulateddelay, stimulatedspontaneous), there is a finite probability of potentiation as well as of depression. This leads to a saturation of potentiation or depression at the level of the ratio of the two probabilities. When one of the two probabilities is very high relative to the other, the familiar Hebbian mechanism is recovered. But where correlated working memory is formed, it prevents overlearning. Constraints relevant to the stability of the acquired synaptic structure and the regimes of global activity allowing for structuring are expressed in terms of the parameters describing the single-synapse dynamics. The synaptic dynamics is discussed in the light of experiments observing precise spike timing effects and related issues of biological plausibility.