Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

January 1, 2006, Vol. 18, No. 1, Pages 119-142
(doi: 10.1162/089976606774841602)
© 2005 Massachusetts Institute of Technology
Facial Attractiveness: Beauty and the Machine
Article PDF (830.94 KB)
Abstract

This work presents a novel study of the notion of facial attractiveness in a machine learning context. To this end, we collected human beauty ratings for data sets of facial images and used various techniques for learning the attractiveness of a face. The trained predictor achieves a significant correlation of 0.65 with the average human ratings. The results clearly show that facial beauty is a universal concept that a machine can learn. Analysis of the accuracy of the beauty prediction machine as a function of the size of the training data indicates that a machine producing human-like attractiveness rating could be obtained given a moderately larger data set.