Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 1, 1998, Vol. 10, No. 3, Pages 567-595
(doi: 10.1162/089976698300017674)
© 1998 Massachusetts Institute of Technology
Neural Processing in the Subsecond Time Range in the Temporal Cortex
Article PDF (520.16 KB)
Abstract

The hypothesis that cortical processing of the millisecond time range is performed by latency competition between the first spikes produced by neuronal populations is analyzed. First, theorems that describe how the mechanism of latency competition works in a model cortex are presented. The model is a sequence of cortical areas, each of which is an array of neuronal populations that laterally inhibit each other. Model neurons are integrate-and-fire neurons. Second, the model is applied to the ventral pathway of the temporal lobe, and neuronal activity of the superior temporal sulcus of the monkey is reproduced with the model pathway. It consists of seven areas: V1, V2/V3, V4, PIT, CIT, AIT, and STPa. Neural activity predicted with the model is compared with empirical data. There are four main results: (1) Neural responses of the area STPa of the model showed the same fast discrimination between stimuli that the corresponding responses of the monkey did: both were significant within 5 ms of the response onset. (2) The hypothesis requires that the response latency of cortical neurons should be shorter for stronger responses. This requirement was verified by both the model simulation and the empirical data. (3) The model reproduced fast discrimination even when spontaneous random firing of 9 Hz was introduced to all the cells. This suggests that the latency competition performed by neuronal populations is robust. (4) After the first few competitions, the mechanism of latency competition always detected the strongest of input activations with different latencies.