Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

February 15, 1998, Vol. 10, No. 2, Pages 467-483
(doi: 10.1162/089976698300017845)
© 1998 Massachusetts Institute of Technology
On Numerical Simulations of Integrate-and-Fire Neural Networks
Article PDF (110.26 KB)
Abstract

It is shown that very small time steps are required to reproduce correctly the synchronization properties of large networks of integrate-and-fire neurons when the differential system describing their dynamics is integrated with the standard Euler or second-order Runge-Kutta algorithms. The reason for that behavior is analyzed, and a simple improvement of these algorithms is proposed.