Quarterly (winter, spring, summer, fall)
128 pp. per issue
7 x 10, illustrated
ISSN
1064-5462
E-ISSN
1530-9185
2014 Impact factor:
1.39

Artificial Life

Summer 2000, Vol. 6, No. 3, Pages 227-235
(doi: 10.1162/106454600568852)
© 2001 Massachusetts Institute of Technology
On Meme–Gene Coevolution
Article PDF (854.4 KB)
Abstract

In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.