Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
2014 Impact factor:

Computational Linguistics

Paola Merlo, Editor
September 2015, Vol. 41, No. 3, Pages 385-435
(doi: 10.1162/COLI_a_00226)
No rights reserved. This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
CODRA: A Novel Discriminative Framework for Rhetorical Analysis
Article PDF (1.1 MB)

Clauses and sentences rarely stand on their own in an actual discourse; rather, the relationship between them carries important information that allows the discourse to express a meaning as a whole beyond the sum of its individual parts. Rhetorical analysis seeks to uncover this coherence structure. In this article, we present CODRA— a COmplete probabilistic Discriminative framework for performing Rhetorical Analysis in accordance with Rhetorical Structure Theory, which posits a tree representation of a discourse.

CODRA comprises a discourse segmenter and a discourse parser. First, the discourse segmenter, which is based on a binary classifier, identifies the elementary discourse units in a given text. Then the discourse parser builds a discourse tree by applying an optimal parsing algorithm to probabilities inferred from two Conditional Random Fields: one for intra-sentential parsing and the other for multi-sentential parsing. We present two approaches to combine these two stages of parsing effectively. By conducting a series of empirical evaluations over two different data sets, we demonstrate that CODRA significantly outperforms the state-of-the-art, often by a wide margin. We also show that a reranking of the k-best parse hypotheses generated by CODRA can potentially improve the accuracy even further.