Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

June 2011, Vol. 23, No. 6, Pages 1503-1535
(doi: 10.1162/NECO_a_00123)
© 2011 Massachusetts Institute of Technology
Vectorized Algorithms for Spiking Neural Network Simulation
Article PDF (1.43 MB)
Abstract

High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.