Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

August 2011, Vol. 23, No. 8, Pages 1967-1999
(doi: 10.1162/NECO_a_00156)
© 2011 Massachusetts Institute of Technology
Online Variational Inference for State-Space Models with Point-Process Observations
Article PDF (968.33 KB)
Abstract

We present a variational Bayesian (VB) approach for the state and parameter inference of a state-space model with point-process observations, a physiologically plausible model for signal processing of spike data. We also give the derivation of a variational smoother, as well as an efficient online filtering algorithm, which can also be used to track changes in physiological parameters. The methods are assessed on simulated data, and results are compared to expectation-maximization, as well as Monte Carlo estimation techniques, in order to evaluate the accuracy of the proposed approach. The VB filter is further assessed on a data set of taste-response neural cells, showing that the proposed approach can effectively capture dynamical changes in neural responses in real time.