Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

October 2011, Vol. 23, No. 10, Pages 2713-2729
(doi: 10.1162/NECO_a_00178)
© 2011 Massachusetts Institute of Technology
Reproducing Kernel Banach Spaces with the ℓ1 Norm II: Error Analysis for Regularized Least Square Regression
Article PDF (286.49 KB)
Abstract

A typical approach in estimating the learning rate of a regularized learning scheme is to bound the approximation error by the sum of the sampling error, the hypothesis error, and the regularization error. Using a reproducing kernel space that satisfies the linear representer theorem brings the advantage of discarding the hypothesis error from the sum automatically. Following this direction, we illustrate how reproducing kernel Banach spaces with the 1 norm can be applied to improve the learning rate estimate of 1-regularization in machine learning.