Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 2012, Vol. 24, No. 4, Pages 1020-1046
(doi: 10.1162/NECO_a_00252)
© 2011 Massachusetts Institute of Technology
Rewiring-Induced Chaos in Pulse-Coupled Neural Networks
Article PDF (2.78 MB)
Abstract

The dependence of the dynamics of pulse-coupled neural networks on random rewiring of excitatory and inhibitory connections is examined. When both excitatory and inhibitory connections are rewired, periodic synchronization emerges with a Hopf-like bifurcation and a subsequent period-doubling bifurcation; chaotic synchronization is also observed. When only excitatory connections are rewired, periodic synchronization emerges with a saddle node–like bifurcation, and chaotic synchronization is also observed. This result suggests that randomness in the system does not necessarily contaminate the system, and sometimes it even introduces rich dynamics to the system such as chaos.