Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

November 2014, Vol. 26, No. 11, Pages 2419-2440
(doi: 10.1162/NECO_a_00658)
@ 2014 Massachusetts Institute of Technology
Approximate Emergent Synchrony in Spatially Coupled Spiking Neurons with Discrete Interaction
Article PDF (1.2 MB)
Abstract

Models for perceptual grouping and contour integration are presented. Connection weights depend on distances and angle differences, while neurons evolve following a spiking dynamics (Izhikevich’s model in most of the considered cases). Although the studied synapses depend on discrete three-valued functions, simulations display the emergence of approximate synchrony, making these cognitive tasks possible. Noise effects are examined, and the possibility of achieving similar results with a different neuron model is discussed.