Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

August 2016, Vol. 28, No. 8, Pages 1694-1722
(doi: 10.1162/NECO_a_00857)
© 2016 Massachusetts Institute of Technology
Credible Intervals for Precision and Recall Based on a K-Fold Cross-Validated Beta Distribution
Article PDF (295.3 KB)
Abstract

In typical machine learning applications such as information retrieval, precision and recall are two commonly used measures for assessing an algorithm's performance. Symmetrical confidence intervals based on K-fold cross-validated t distributions are widely used for the inference of precision and recall measures. As we confirmed through simulated experiments, however, these confidence intervals often exhibit lower degrees of confidence, which may easily lead to liberal inference results. Thus, it is crucial to construct faithful confidence (credible) intervals for precision and recall with a high degree of confidence and a short interval length. In this study, we propose two posterior credible intervals for precision and recall based on K-fold cross-validated beta distributions. The first credible interval for precision (or recall) is constructed based on the beta posterior distribution inferred by all K data sets corresponding to K confusion matrices from a K-fold cross-validation. Second, considering that each data set corresponding to a confusion matrix from a K-fold cross-validation can be used to infer a beta posterior distribution of precision (or recall), the second proposed credible interval for precision (or recall) is constructed based on the average of K beta posterior distributions. Experimental results on simulated and real data sets demonstrate that the first credible interval proposed in this study almost always resulted in degrees of confidence greater than 95%. With an acceptable degree of confidence, both of our two proposed credible intervals have shorter interval lengths than those based on a corrected K-fold cross-validated t distribution. Meanwhile, the average ranks of these two credible intervals are superior to that of the confidence interval based on a K-fold cross-validated t distribution for the degree of confidence and are superior to that of the confidence interval based on a corrected K-fold cross-validated t distribution for the interval length in all 27 cases of simulated and real data experiments. However, the confidence intervals based on the K-fold and corrected K-fold cross-validated t distributions are in the two extremes. Thus, when focusing on the reliability of the inference for precision and recall, the proposed methods are preferable, especially for the first credible interval.