288 pp. per issue
6 x 9, illustrated
2014 Impact factor:

Neural Computation

August 2016, Vol. 28, No. 8, Pages 1574-1598
(doi: 10.1162/NECO_a_00858)
© 2016 Massachusetts Institute of Technology
Hermite Functional Link Neural Network for Solving the Van der Pol–Duffing Oscillator Equation
Article PDF (2.94 MB)

Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol–Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol–Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol–Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.