288 pp. per issue
6 x 9, illustrated
2014 Impact factor:

Neural Computation

January 2017, Vol. 29, No. 1, Pages 171-193
(doi: 10.1162/NECO_a_00911)
© 2016 Massachusetts Institute of Technology
Orientation Histogram-Based Center-Surround Interaction: An Integration Approach for Contour Detection
Article PDF (1.01 MB)

Contour is a critical feature for image description and object recognition in many computer vision tasks. However, detection of object contour remains a challenging problem because of disturbances from texture edges. This letter proposes a scheme to handle texture edges by implementing contour integration. The proposed scheme integrates structural segments into contours while inhibiting texture edges with the help of the orientation histogram-based center-surround interaction model. In the model, local edges within surroundings exert a modulatory effect on central contour cues based on the co-occurrence statistics of local edges described by the divergence of orientation histograms in the local region. We evaluate the proposed scheme on two well-known challenging boundary detection data sets (RuG and BSDS500). The experiments demonstrate that our scheme achieves a high -measure of up to 0.74. Results show that our scheme achieves integrating accurate contour while eliminating most of texture edges, a novel approach to long-range feature analysis.