Quarterly (Winter, Spring, Summer, Fall)
330 pp. per issue
8 1/2 x 11
E-ISSN
2472-1751

Network Neuroscience

Olaf Sporns, Editor
Spring 2017, Vol. 1, No. 2, Pages 100-115
(doi: 10.1162/NETN_a_00006)
Spontaneous brain network activity: Analysis of its temporal complexity
Article PDF (1.09 MB)
Abstract

The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node) and participation coefficients (the between-module connectivity of a node) were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1) Entropy is higher for the participation coefficient than for the clustering coefficient. (2) The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3) The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy.In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient) and integration (the participation coefficient) are temporally complex, situated between complete order and disorder. Our results also indicated that “segregated network nodes” may attempt to minimize the network’s entropy, whereas “integrated network nodes” require a higher information load, and therefore need to increase entropy. We believe that combining temporal information from functional brain networks and entropy can be used to test the decomplexification theory of disease, especially in neurological and psychiatric conditions characterized by paroxysmal brain abnormalities (e.g., schizophrenia and epilepsy).