Quarterly (spring, summer, fall, winter)
176 pp. per issue
7 x 10
2014 Impact factor:

Evolutionary Computation

Winter 2008, Vol. 16, No. 4, Pages 461-481
(doi: 10.1162/evco.2008.16.4.461)
© 2008 by the Massachusetts Institute of Technology
Texture Segmentation by Genetic Programming
Article PDF (3.14 MB)

This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.