Quarterly (spring, summer, fall, winter)
176 pp. per issue
7 x 10
ISSN
1063-6560
E-ISSN
1530-9304
2014 Impact factor:
2.37

Evolutionary Computation

Fall 2019, Vol. 27, No. 3, Pages 497-523
(doi: 10.1162/evco_a_00229)
© 2018 Massachusetts Institute of Technology
Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming
Article PDF (5.84 MB)
Abstract
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time-consuming process as the predictor size depends on a given application, and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.