Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

October 2007, Vol. 19, No. 10, Pages 1643-1655
(doi: 10.1162/jocn.2007.19.10.1643)
© 2007 Massachusetts Institute of Technology
The Neural Substrates of Visual Perceptual Learning of Words: Implications for the Visual Word Form Area Hypothesis
Article PDF (401.73 KB)
Abstract

It remains under debate whether the fusiform visual word form area (VWFA) is specific to visual word form and whether visual expertise increases its sensitivity (Xue et al., 2006; Cohen et al., 2002). The present study examined three related issues: (1) whether the VWFA is also involved in processing foreign writing that significantly differs from the native one, (2) the effect of visual word form training on VWFA activation after controlling the task difficulty, and (3) the transfer of visual word form learning. Eleven native English speakers were trained, during five sessions, to judge whether two subsequently flashed (100-msec duration with 200-msec interval) foreign characters (i.e., Korean Hangul) were identical or not. Visual noise was added to the stimuli to manipulate task difficulty. In functional magnetic resonance imaging scans before and after training, subjects performed the task once with the same noise level (i.e., parameter-matched scan) and once with noise level changed to match performance from pretraining to posttraining (i.e., performance-matched scan). Results indicated that training increased the accuracy in parameter-matched condition but remained constant in performance-matched condition (because of increasing task difficulty). Pretraining scans revealed stronger activation for English words than for Korean characters in the left inferior temporal gyrus and the left inferior frontal cortex, but not in the VWFA. Visual word form training significantly decreased the activation in the bilateral middle and left posterior fusiform when either parameters or performance were matched and for both trained and new items. These results confirm our conjecture that the VWFA is not dedicated to words, and visual expertise acquired with training reduces rather than increases its activity.