Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

June 2007, Vol. 19, No. 6, Pages 1004-1012.
(doi: 10.1162/jocn.2007.19.6.1004)
© 2007 Massachusetts Institute of Technology
Functional Interactions during the Retrieval of Conceptual Action Knowledge: An fMRI Study
Article PDF (260.33 KB)
Abstract

Impaired retrieval of conceptual knowledge for actions has been associated with lesions of left premotor, left parietal, and left middle temporal areas [Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H., & Damasio, A. R. Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology, 409–432, 2003]. Here we aimed at characterizing the differential contribution of these areas to the retrieval of conceptual knowledge about actions. During functional magnetic resonance imaging (fMRI), different categories of pictograms (whole-body actions, manipulable and nonmanipulable objects) were presented to healthy subjects. fMRI data were analyzed using SPM2. A conjunction analysis of the neural activations elicited by all pictograms revealed ( p < .05, corrected) a bilateral inferior occipito-temporal neural network with strong activations in the right and left fusiform gyri. Action pictograms contrasted to object pictograms showed differential activation of area MT+, the inferior and superior parietal cortex, and the premotor cortex bilaterally. An analysis of psychophysiological interactions identified contribution-dependent changes in the neural responses when pictograms triggered the retrieval of conceptual action knowledge: Processing of action pictograms specifically enhanced the neural interaction between the right and left fusiform gyri, the right and left middle temporal cortices (MT+), and the left superior and inferior parietal cortex. These results complement and extend previous neuropsychological and neuroimaging studies by showing that knowledge about action concepts results from an increased coupling between areas concerned with semantic processing (fusiform gyrus), movement perception (MT+), and temporospatial movement control (left parietal cortex).