208 pp. per issue
8 1/2 x 11, illustrated
2014 Impact factor:

Journal of Cognitive Neuroscience

April 2008, Vol. 20, No. 4, Pages 563-579.
(doi: 10.1162/jocn.2008.20047)
© 2008 Massachusetts Institute of Technology
Activity of Primate Orbitofrontal and Dorsolateral Prefrontal Neurons: Effect of Reward Schedule on Task-related Activity
Article PDF (779.82 KB)

Recent studies show that task-related activity in the dorsolateral prefrontal cortex (DLPFC) is modulated by the quality and quantity of the reward, suggesting that the subject's motivational state affects cognitive operations in the DLPFC. The orbito-frontal cortex (OFC) is a possible source of motivational inputs to the DLPFC. However, it is not well known whether these two areas exhibit similar motivational effects on task-related activity. We compared motivational effects on task-related activity in these areas while a monkey performed an oculomotor delayed-response (ODR) task under two reward schedules. In the ODR-1 schedule, reward was given only after the successful completion of four consecutive trials, whereas in the ODR-2 schedule, reward was given after every correct trial. Task-related activities in both areas showed spatial selectivity. The spatial characteristics of task-related activity remained constant in both schedules. Task-related activity in both areas, especially delay-period activity, was also affected by the reward schedule and the magnitude of the activity gradually increased depending on the proximity of the reward trial in the ODR-1 schedule. More task-related OFC activities were affected by reward schedules, whereas more task-related DLPFC activities were affected by spatial factors and reward schedules. These results indicate that the OFC plays a role in monitoring the proximity of the reward trial and detecting reward delivery, whereas the DLPFC plays a role in performing cognitive operations and integrating cognitive and motivational information. These results also indicate that spatial information and the animal's motivational state independently affect neuronal activity in both areas.