Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

November 2014, Vol. 26, No. 11, Pages 2624-2636
(doi: 10.1162/jocn_a_00662)
@ 2014 Massachusetts Institute of Technology
Functional Reorganization of the Visual Dorsal Stream as Probed by 3-D Visual Coherence in Williams Syndrome
Article PDF (845.93 KB)
Abstract

Object and depth perception from motion cues involves the recruitment of visual dorsal stream brain areas. In 3-D structure-from-motion (SFM) perception, motion and depth information are first extracted in this visual stream to allow object categorization, which is in turn mediated by the ventral visual stream. Such interplay justifies the use of SFM paradigms to understand dorsal–ventral integration of visual information. The nature of such processing is particularly interesting to be investigated in a neurological model of cognitive dissociation between dorsal (impaired) and ventral stream (relatively preserved) processing, Williams syndrome (WS). In the current fMRI study, we assessed dorsal versus ventral stream processing by using a performance-matched 3-D SFM object categorization task. We found evidence for substantial reorganization of the dorsal stream in WS as assessed by whole-brain ANOVA random effects analysis, with subtle differences in ventral activation. Dorsal reorganization was expressed by larger medial recruitment in WS (cuneus, precuneus, and retrosplenial cortex) in contrast with controls, which showed the expected dorsolateral pattern (caudal intraparietal sulcus and lateral occipital cortex). In summary, we found a substantial reorganization of dorsal stream regions in WS in response to simple visual categories and 3-D SFM perception, with less affected ventral stream. Our results corroborate the existence of a medial dorsal pathway that provides the substrate for information rerouting and reorganization in the presence of lateral dorsal stream vulnerability. This interpretation is consistent with recent findings suggesting parallel routing of information in medial and lateral parts of dorsal stream.