208 pp. per issue
8 1/2 x 11, illustrated
2014 Impact factor:

Journal of Cognitive Neuroscience

January 2015, Vol. 27, No. 1, Pages 198-209
(doi: 10.1162/jocn_a_00687)
© 2014 Massachusetts Institute of Technology
Rehearsing Biological Motion in Working Memory: An EEG Study
Article PDF (583.25 KB)

Holding biological motion (BM), the movements of animate entities, in working memory (WM) is important to our daily social life. However, how BM is maintained in WM remains unknown. The current study investigated this issue and hypothesized that, analogous to BM perception, the human mirror neuron system (MNS) is involved in rehearsing BM in WM. To examine the MNS hypothesis of BM rehearsal, we used an EEG index of mu suppression (8–12 Hz), which has been linked to the MNS. Using a change detection task, we manipulated the BM memory load in three experiments. We predicted that mu suppression in the maintenance phase of WM would be modulated by the BM memory load; moreover, a negative correlation between the number of BM stimuli in WM and the degree of mu suppression may emerge. The results of Experiment 1 were in line with our predictions and revealed that mu suppression increased as the memory load increased from two to four BM stimuli; however, mu suppression then plateaued, as WM could only hold, at most, four BM stimuli. Moreover, the predicted negative correlation was observed. Corroborating the findings of Experiment 1, Experiment 2 further demonstrated that once participants used verbal codes to process the motion information, the mu suppression or modulation by memory load vanished. Finally, Experiment 3 demonstrated that the findings in Experiment 1 were not limited to one specific type of stimuli. Together, these results provide evidence that the MNS underlies the process of rehearsing BM in WM.