208 pp. per issue
8 1/2 x 11, illustrated
2014 Impact factor:

Journal of Cognitive Neuroscience

July 2015, Vol. 27, No. 7, Pages 1376-1387
(doi: 10.1162/jocn_a_00787)
© 2015 Massachusetts Institute of Technology
Visual Number Beats Abstract Numerical Magnitude: Format-dependent Representation of Arabic Digits and Dot Patterns in Human Parietal Cortex
Article PDF (1.28 MB)

In numerical cognition, there is a well-known but contested hypothesis that proposes an abstract representation of numerical magnitude in human intraparietal sulcus (IPS). On the other hand, researchers of object cognition have suggested another hypothesis for brain activity in IPS during the processing of number, namely that this activity simply correlates with the number of visual objects or units that are perceived. We contrasted these two accounts by analyzing multivoxel activity patterns elicited by dot patterns and Arabic digits of different magnitudes while participants were explicitly processing the represented numerical magnitude. The activity pattern elicited by the digit “8” was more similar to the activity pattern elicited by one dot (with which the digit shares the number of visual units but not the magnitude) compared to the activity pattern elicited by eight dots, with which the digit shares the represented abstract numerical magnitude. A multivoxel pattern classifier trained to differentiate one dot from eight dots classified all Arabic digits in the one-dot pattern category, irrespective of the numerical magnitude symbolized by the digit. These results were consistently obtained for different digits in IPS, its subregions, and many other brain regions. As predicted from object cognition theories, the number of presented visual units forms the link between the parietal activation elicited by symbolic and nonsymbolic numbers. The current study is difficult to reconcile with the hypothesis that parietal activation elicited by numbers would reflect a format-independent representation of number.