Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

January 2016, Vol. 28, No. 1, Pages 125-139
(doi: 10.1162/jocn_a_00881)
© 2015 Massachusetts Institute of Technology
Decoding Episodic Retrieval Processes: Frontoparietal and Medial Temporal Lobe Contributions to Free Recall
Article PDF (338.64 KB)
Abstract

Neuroimaging studies of recognition memory have identified distinct patterns of cortical activity associated with two sets of cognitive processes: Recollective processes supporting retrieval of information specifying a probe item's original source are associated with the posterior hippocampus, ventral posterior parietal cortex, and medial pFC. Familiarity processes supporting the correct identification of previously studied probes (in the absence of a recollective response) are associated with activity in anterior medial temporal lobe (MTL) structures including the perirhinal cortex and anterior hippocampus, in addition to lateral prefrontal and dorsal posterior parietal cortex. Here, we address an open question in the cognitive neuroscientific literature: To what extent are these same neurocognitive processes engaged during an internally directed memory search task like free recall? We recorded fMRI activity while participants performed a series of free recall and source recognition trials, and we used a combination of univariate and multivariate analysis techniques to compare neural activation profiles across the two tasks. Univariate analyses showed that posterior MTL regions were commonly associated with recollective processes during source recognition and with free recall responses. Prefrontal and posterior parietal regions were commonly associated with familiarity processes and free recall responses, whereas anterior MTL regions were only associated with familiarity processes during recognition. In contrast with the univariate results, free recall activity patterns characterized using multivariate pattern analysis did not reliably match the neural patterns associated with recollective processes. However, these free recall patterns did reliably match patterns associated with familiarity processes, supporting theories of memory in which common cognitive mechanisms support both item recognition and free recall.