208 pp. per issue
8 1/2 x 11, illustrated
2014 Impact factor:

Journal of Cognitive Neuroscience

February 2016, Vol. 28, No. 2, Pages 252-260
(doi: 10.1162/jocn_a_00900)
© 2015 Massachusetts Institute of Technology
Visual Cortical Representation of Whole Words and Hemifield-split Word Parts
Article PDF (465.43 KB)

Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex—especially those that evolved to support the visual processing of faces—are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.