Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

December 2016, Vol. 28, No. 12, Pages 2044-2058
(doi: 10.1162/jocn_a_01021)
© 2016 Massachusetts Institute of Technology
Musicianship and Tone Language Experience Are Associated with Differential Changes in Brain Signal Variability
Article PDF (1.63 MB)
Abstract

Musicianship has been associated with auditory processing benefits. It is unclear, however, whether pitch processing experience in nonmusical contexts, namely, speaking a tone language, has comparable associations with auditory processing. Studies comparing the auditory processing of musicians and tone language speakers have shown varying degrees of between-group similarity with regard to perceptual processing benefits and, particularly, nonlinguistic pitch processing. To test whether the auditory abilities honed by musicianship or speaking a tone language differentially impact the neural networks supporting nonlinguistic pitch processing (relative to timbral processing), we employed a novel application of brain signal variability (BSV) analysis. BSV is a metric of information processing capacity and holds great potential for understanding the neural underpinnings of experience-dependent plasticity. Here, we measured BSV in electroencephalograms of musicians, tone language-speaking nonmusicians, and English-speaking nonmusicians (controls) during passive listening of music and speech sound contrasts. Although musicians showed greater BSV across the board, each group showed a unique spatiotemporal distribution in neural network engagement: Controls had greater BSV for speech than music; tone language-speaking nonmusicians showed the opposite effect; musicians showed similar BSV for both domains. Collectively, results suggest that musical and tone language pitch experience differentially affect auditory processing capacity within the cerebral cortex. However, information processing capacity is graded: More experience with pitch is associated with greater BSV when processing this cue. Higher BSV in musicians may suggest increased information integration within the brain networks subserving speech and music, which may be related to their well-documented advantages on a wide variety of speech-related tasks.