Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

January 2018, Vol. 30, No. 1, Pages 1-13
(doi: 10.1162/jocn_a_01188)
© 2017 Massachusetts Institute of Technology
Familiarity Speeds Up Visual Short-term Memory Consolidation: Electrophysiological Evidence from Contralateral Delay Activities
Article PDF (2.32 MB)
Abstract

To test how preexisting long-term memory influences visual STM, this study takes advantage of individual differences in participants' prior familiarity with Pokémon characters and uses an ERP component, the contralateral delay activity (CDA), to assess whether observers' prior stimulus familiarity affects STM consolidation and storage capacity. In two change detection experiments, consolidation speed, as indexed by CDA fractional area latency and/or early-window (500–800 msec) amplitude, was significantly associated with individual differences in Pokémon familiarity. In contrast, the number of remembered Pokémon stimuli, as indexed by Cowan's K and late-window (1500–2000 msec) CDA amplitude, was significantly associated with individual differences in Pokémon familiarity when STM consolidation was incomplete because of a short presentation of Pokémon stimuli (500 msec, Experiment 2), but not when STM consolidation was allowed to complete given sufficient encoding time (1000 msec, Experiment 1). Similar findings were obtained in between-group analyses when participants were separated into high-familiarity and low-familiarity groups based on their Pokémon familiarity ratings. Together, these results suggest that stimulus familiarity, as a proxy for the strength of preexisting long-term memory, primarily speeds up STM consolidation, which may subsequently lead to an increase in the number of remembered stimuli if consolidation is incomplete. These findings thus highlight the importance of research assessing how effects on representations (e.g., STM capacity) are in general related to (or even caused by) effects on processes (e.g., STM consolidation) in cognition.