Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

December 2018, Vol. 30, No. 12, Pages 1803-1820
(doi: 10.1162/jocn_a_01317)
© 2018 Massachusetts Institute of Technology
Noradrenergic and Cholinergic Modulation of Belief Updating
Article PDF (1.11 MB)
Abstract

To make optimal predictions in a dynamic environment, the impact of new observations on existing beliefs—that is, the learning rate—should be guided by ongoing estimates of change and uncertainty. Theoretical work has proposed specific computational roles for various neuromodulatory systems in the control of learning rate, but empirical evidence is still sparse. The aim of the current research was to examine the role of the noradrenergic and cholinergic systems in learning rate regulation. First, we replicated our recent findings that the centroparietal P3 component of the EEG—an index of phasic catecholamine release in the cortex—predicts trial-to-trial variability in learning rate and mediates the effects of surprise and belief uncertainty on learning rate (Study 1, n = 17). Second, we found that pharmacological suppression of either norepinephrine or acetylcholine activity produced baseline-dependent effects on learning rate following nonobvious changes in an outcome-generating process (Study 1). Third, we identified two genes, coding for α2A receptor sensitivity (ADRA2A) and norepinephrine reuptake (NET), as promising targets for future research on the genetic basis of individual differences in learning rate (Study 2, n = 137). Our findings suggest a role for the noradrenergic and cholinergic systems in belief updating and underline the importance of studying interactions between different neuromodulatory systems.