Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

September 2019, Vol. 31, No. 9, Pages 1329-1342
(doi: 10.1162/jocn_a_01412)
© 2019 Massachusetts Institute of Technology
Attentional Modulation of Visual Spatial Integration: Psychophysical Evidence Supported by Population Coding Modeling
Article PDF (2.73 MB)
Abstract
Two prominent strategies that the human visual system uses to reduce incoming information are spatial integration and selective attention. Whereas spatial integration summarizes and combines information over the visual field, selective attention can single it out for scrutiny. The way in which these well-known mechanisms—with rather opposing effects—interact remains largely unknown. To address this, we had observers perform a gaze-contingent search task that nudged them to deploy either spatial or feature-based attention to maximize performance. We found that, depending on the type of attention employed, visual spatial integration strength changed either in a strong and localized or a more modest and global manner compared with a baseline condition. Population code modeling revealed that a single mechanism can account for both observations: Attention acts beyond the neuronal encoding stage to tune the spatial integration weights of neural populations. Our study shows how attention and integration interact to optimize the information flow through the brain.