Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

October 2019, Vol. 31, No. 10, Pages 1468-1483
(doi: 10.1162/jocn_a_01435)
© 2019 Massachusetts Institute of Technology
Monitoring Multiple Deadlines Relies on Spatial Processing in Posterior Parietal Cortex
Article PDF (1.96 MB)
Abstract

Proactively coordinating one's actions is an important aspect of multitasking performance due to overlapping task sequences. In this study, we used fMRI to investigate neural mechanisms underlying monitoring of multiple overlapping task sequences. We tested the hypothesis that temporal control demands in multiple-task monitoring are offloaded onto spatial processes by representing patterns of temporal deadlines in spatial terms. Results showed that increased demands on time monitoring (i.e., responding to concurrent deadlines of one to four component tasks) increasingly activated regions in the left inferior parietal lobe and the precuneus. Moreover, independent measures of spatial abilities correlated with multiple-task performance beyond the contribution of working memory. Together, these findings suggest that monitoring and coordination of temporally overlapping task timelines rely on cortical processes involved in spatial information processing. We suggest that the precuneus is involved in tracking of multiple task timelines, whereas the inferior parietal lobe constructs spatial representations of the temporal relations of these overlapping timelines. These findings are consistent with the spatial offloading hypothesis and add new insights into the neurocognitive mechanisms underlying the coordination of multiple tasks.