Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

Spring 1989, Vol. 1, No. 1, Pages 58-67
(doi: 10.1162/neco.1989.1.1.58)
© 1989 Massachusetts Institute of Technology
Criteria for Robust Stability In A Class Of Lateral Inhibition Networks Coupled Through Resistive Grids
Article PDF (428.89 KB)
Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build lateral inhibition networks by using a locally connected on-chip resistive grid to interconnect active elements. A serious problem of unwanted spontaneous oscillation often arises with these circuits and renders them unusable in practice. This paper reports on criteria that guarantee these and certain other systems will be stable, even though the values of designed elements in the resistive grid may be imprecise and the location and values of parasitic elements may be unknown. The method is based on a rigorous, somewhat novel mathematical analysis using Tellegen's theorem (Penfield et al. 1970) from electrical circuits and the idea of a Popov multiplier (Vidyasagar 1978; Desoer and Vidyasagar 1975) from control theory. The criteria are local in that no overall analysis of the interconnected system is required for their use, empirical in that they involve only measurable frequency response data on the individual cells, and robust in that they are insensitive to network topology and to unmodelled parasitic resistances and capacitances in the interconnect network. Certain results are robust in the additional sense that specified nonlinear elements in the grid do not affect the stability criteria. The results are designed to be applicable, with further development, to complex and incompletely modeled living neural systems.