Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

Summer 1989, Vol. 1, No. 2, Pages 253-262
(doi: 10.1162/neco.1989.1.2.253)
© 1989 Massachusetts Institute of Technology
A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network
Article PDF (765.99 KB)
Abstract

Most animals have significant behavioral expertise built in without having to explicitly learn it all from scratch. This expertise is a product of evolution of the organism; it can be viewed as a very long-term form of learning which provides a structured system within which individuals might learn more specialized skills or abilities. This paper suggests one possible mechanism for analagous robot evolution by describing a carefully designed series of networks, each one being a strict augmentation of the previous one, which control a six-legged walking machine capable of walking over rough terrain and following a person passively sensed in the infrared spectrum. As the completely decentralized networks are augmented, the robot's performance and behavior repertoire demonstrably improve. The rationale for such demonstrations is that they may provide a hint as to the requirements for automatically building massive networks to carry out complex sensory-motor tasks. The experiments with an actual robot ensure that an essence of reality is maintained and that no critical disabling problems have been ignored.