Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

Fall 1990, Vol. 2, No. 3, Pages 293-307
(doi: 10.1162/neco.1990.2.3.293)
© 1990 Massachusetts Institute of Technology
Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex
Article PDF (764.97 KB)
Abstract

We recently discovered stimulus-specific interactions between cell assemblies in cat primary visual cortex that could constitute a global linking principle for feature associations in sensory and motor systems: stimulus-induced oscillatory activities (35-80 Hz) in remote cell assemblies of the same and of different visual cortex areas mutually synchronize, if common stimulus features drive the assemblies simultaneously. Based on our neurophysiological findings we simulated feature linking via synchronizations in networks of model neurons. The networks consisted of two one-dimensional layers of neurons, coupled in a forward direction via feeding connections and in lateral and backward directions via modulatory linking connections. The models' performance is demonstrated in examples of region linking with spatiotemporally varying inputs, where the rhythmic activities in response to an input, that initially are uncorrelated, become phase locked. We propose that synchronization is a general principle for the coding of associations in and among sensory systems and that at least two distinct types of synchronization do exist: stimulus-forced (event-locked) synchronizations support “crude instantaneous” associations and stimulus-induced (oscillatory) synchronizations support more complex iterative association processes. In order to bring neural linking mechanisms into correspondence with perceptual feature linking, we introduce the concept of the linking field (association field) of a local assembly of visual neurons. The linking field extends the concept of the invariant receptive field (RF) of single neurons to the flexible association of RFs in neural assemblies.