Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

Summer 1991, Vol. 3, No. 2, Pages 145-154
(doi: 10.1162/neco.1991.3.2.145)
© 1991 Massachusetts Institute of Technology
Pacemaker-Induced Coherence in Cortical Networks
Article PDF (526.54 KB)
Abstract

A simple mathematical model of cortical tissue is introduced and the system's dynamics is monitored when a small subset of neurons is submitted to oscillatory inputs of various frequency and waveform. In the absence of input, the system shows desynchronized or “turbulent” behavior. The oscillatory input synchronizes the neuronal activity, which is strongest for inputs of low frequency. The increase of spatial coherence is estimated from the spatial autocorrelation function whereas the increase in temporal coherence is evaluated from correlation dimensions. The model accounts qualitatively for some of the features of the thalamocortical system.