Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

Winter 1991, Vol. 3, No. 4, Pages 589-603
(doi: 10.1162/neco.1991.3.4.589)
© 1991 Massachusetts Institute of Technology
Temporal Evolution of Generalization during Learning in Linear Networks
Article PDF (643.08 KB)
Abstract

We study generalization in a simple framework of feedforward linear networks with n inputs and n outputs, trained from examples by gradient descent on the usual quadratic error function. We derive analytical results on the behavior of the validation function corresponding to the LMS error function calculated on a set of validation patterns. We show that the behavior of the validation function depends critically on the initial conditions and on the characteristics of the noise. Under certain simple assumptions, if the initial weights are sufficiently small, the validation function has a unique minimum corresponding to an optimal stopping time for training for which simple bounds can be calculated. There exists also situations where the validation function can have more complicated and somewhat unexpected behavior such as multiple local minima (at most n) of variable depth and long but finite plateau effects. Additional results and possible extensions are briefly discussed.